20 research outputs found

    Holistic Thermal Energy Modelling for Full Hybrid Electric Vehicles (HEVs)

    Get PDF
    Full hybrid electric vehicles are usually defined by their capability to drive in a fully electric mode, offering the advantage that they do not produce any emissions at the point of use. This is particularly important in built up areas, where localized emissions in the form of NOx and particulate matter may worsen health issues such as respiratory disease. However, high degrees of electrification also mean that waste heat from the internal combustion engine is often not available for heating the cabin and for maintaining the temperature of the powertrain and emissions control system. If not managed properly, this can result in increased fuel consumption, exhaust emissions, and reduced electric-only range at moderately high or low ambient temperatures negating many of the benefits of the electrification. This paper describes the development of a holistic, modular vehicle model designed for development of an integrated thermal energy management strategy. The developed model utilizes advanced simulation techniques, such as co-simulation, to incorporate a high-fidelity 1D thermo-fluid model, a multi-phase HVAC model, and a multi-zone cabin model within an existing longitudinal powertrain simulation environment. It is shown that the final model is useful of detailed analysis of thermal pathways including energy losses due to powertrain warm-up at various ambient temperatures and after periods of parked time. This enables identification of sources of energy loss and inefficiency over a wide range of environmental conditions. </div

    Co-Simulation Methods for Holistic Vehicle Design: A Comparison

    Get PDF
    Vehicle development involves the design and integration of subsystems of different domains to meet performance, efficiency, and emissions targets set during the initial developmental stages. Before a physical prototype of a vehicle or vehicle powertrain is tested, engineers build and test virtual prototypes of the design(s) on multiple stages throughout the development cycle. In addition, controllers and physical prototypes of subsystems are tested under simulated signals before a physical prototype of the vehicle is available. Different departments within an automotive company tend to use different modelling and simulation tools specific to the needs of their specific engineering discipline. While this makes sense considering the development of the said system, subsystem, or component, modern holistic vehicle engineering requires the constituent parts to operate in synergy with one-another in order to ensure vehicle-level optimal performance. Due to the above, integrated simulation of the models developed in different environments is necessary. While a large volume of existing co-simulation related publications aimed towards engineering software developers, user-oriented publications on the characteristics of integration methods are very limited. This paper reviews the current trends in model integration methods applied within the automotive industry. The reviewed model integration methods are evaluated and compared with respect to an array of criteria such as required workflow, software requirements, numerical results, and simulation speed by means of setting up and carrying out simulations on a set of different model integration case studies. The results of this evaluation constitute a comparative analysis of the suitability of each integration method for different automotive design applications. This comparison is aimed towards the end-users of simulation tools, who in the process of setting up a holistic high-level vehicle model, may have to select the most suitable among an array of available model integration techniques, given the application and the set of selection criteria

    Modelling and Co-simulation of hybrid vehicles: A thermal management perspective

    Get PDF
    Thermal management plays a vital role in the modern vehicle design and delivery. It enables the thermal analysis and optimisation of energy distribution to improve performance, increase efficiency and reduce emissions. Due to the complexity of the overall vehicle system, it is necessary to use a combination of simulation tools. Therefore, the co-simulation is at the centre of the design and analysis of electric, hybrid vehicles. For a holistic vehicle simulation to be realized, the simulation environment must support many physical domains. In this paper, a wide variety of system designs for modelling vehicle thermal performance are reviewed, providing an overview of necessary considerations for developing a cost-effective tool to evaluate fuel consumption and emissions across dynamic drive-cycles and under a range of weather conditions. The virtual models reviewed in this paper provide tools for component-level, system-level and control design, analysis, and optimisation. This paper concerns the latest techniques for an overall vehicle model development and software integration of multi-domain subsystems from a thermal management view and discusses the challenges presented for future studies

    Workshop report: land use decision-making for biomass deployment, bridging the gap between national scale targets and field scale decisions

    Get PDF
    The workshop brought together 74 attendees representing stakeholders from academia, industry (including biomass suppliers, agricultural consultancies, and end-users), NGOs and government (with representation from the England, Scotland and Welsh governments). Attendees contributed comments and recommendation on three questions relating to land suitability, barriers to growth of the sector, and tools needed to support stakeholder decisions around deployment

    The clean energy connection

    No full text
    A comic booklet produced by the University of Sheffield Mechanical Engineering Department Energy 2050 Research group. It covers the energy transition, grid integration, green fuels, sustainable aviation fuels and experimental techniques. It was produced by PhD students to aid the understanding of key issues facing the transition to a greener future.</p

    DataSheet1_Feasibility on equivalence ratio measurement via OH*, CH*, and C2* chemiluminescence and study of soot emissions in co-flow non-premixed DME/C1–C2 hydrocarbon flames.PDF

    No full text
    The effects of dimethyl ether (DME) addition to methane and ethylene fuels on the combustion characteristics of heat release, soot emissions, and flame temperature were investigated experimentally and numerically in a non-premixed laminar flame configuration. The flame-heat release soot-volume fraction was measured experimentally using CH*, OH*, and C2* chemiluminescence and planar two-color soot pyrometry, respectively. The CH*, OH*, and C2* were used to locate flame-heat release regions as well as to investigate the soot signal’s effect on their measurements. The ratios of the chemiluminescence pairs (OH*/CH* and OH*/C2*) were studied for the feasibility of map local equivalence ratios. Numerical calculations across a full range of DME mixing ratios were performed through 1D laminar flame simulations implemented with a detailed mechanism to provide an indication of the flame structures and profiles of key species including OH*, OH, CH*, CH, CH3, C3H3, C2H2, heat release rate (HRR), and flame temperature. An existing developed soot model was used in a 2D computational study to investigate its validity for modeling soot for DME (oxygenated fuel)/C2H4/N2 flames. Parametric studies have been carried out on some key parameters in the soot model to find optimum values that can be used in future studies. Although soot radiation intensities increased at a small amount (25%vol) of DME addition in the DME/methane flames, the soot pyrometry results showed a reduced soot volume fraction with an increased DME mixture ratio in both DME/methane and DME/ethylene flames studied, agreeing with the key conclusion of 1D numerical results. The flame HRR decreases with the increasing addition of DME to methane and ethylene flames and correlates with the trend of OH* and CH* profiles. The 1D simulation showed a non-monotonic correlation between OH*/CH* ratios and equivalence ratios, implying a limited use of OH*/CH* for the equivalence ratio measurement in non-premixed flames with DME additions.</p

    Table1_Feasibility on equivalence ratio measurement via OH*, CH*, and C2* chemiluminescence and study of soot emissions in co-flow non-premixed DME/C1–C2 hydrocarbon flames.XLSX

    No full text
    The effects of dimethyl ether (DME) addition to methane and ethylene fuels on the combustion characteristics of heat release, soot emissions, and flame temperature were investigated experimentally and numerically in a non-premixed laminar flame configuration. The flame-heat release soot-volume fraction was measured experimentally using CH*, OH*, and C2* chemiluminescence and planar two-color soot pyrometry, respectively. The CH*, OH*, and C2* were used to locate flame-heat release regions as well as to investigate the soot signal’s effect on their measurements. The ratios of the chemiluminescence pairs (OH*/CH* and OH*/C2*) were studied for the feasibility of map local equivalence ratios. Numerical calculations across a full range of DME mixing ratios were performed through 1D laminar flame simulations implemented with a detailed mechanism to provide an indication of the flame structures and profiles of key species including OH*, OH, CH*, CH, CH3, C3H3, C2H2, heat release rate (HRR), and flame temperature. An existing developed soot model was used in a 2D computational study to investigate its validity for modeling soot for DME (oxygenated fuel)/C2H4/N2 flames. Parametric studies have been carried out on some key parameters in the soot model to find optimum values that can be used in future studies. Although soot radiation intensities increased at a small amount (25%vol) of DME addition in the DME/methane flames, the soot pyrometry results showed a reduced soot volume fraction with an increased DME mixture ratio in both DME/methane and DME/ethylene flames studied, agreeing with the key conclusion of 1D numerical results. The flame HRR decreases with the increasing addition of DME to methane and ethylene flames and correlates with the trend of OH* and CH* profiles. The 1D simulation showed a non-monotonic correlation between OH*/CH* ratios and equivalence ratios, implying a limited use of OH*/CH* for the equivalence ratio measurement in non-premixed flames with DME additions.</p

    Heat retention analysis with thermal encapsulation of powertrain under natural soak environment

    No full text
    This paper investigates high fatality modelling of vehicle heat transfer process during natural soak environment and heat retention benefits with powertrain encapsulations. A coupled computer-aided-engineering (CAE) method utilising 3D computational-fluids-dynamics (CFD) and transient thermal modelling was applied to solve buoyancy-driven convection, thermal radiation and conduction heat transfer of vehicle structure and fluids within. Two vehicle models with different encapsulation layouts were studied. One has engine-mounted-encapsulation (EME) and the other has additional vehicle-mounted-encapsulation (VME). Coupled transient heat transfer simulations were carried out for the two vehicle models to simulate their cool-down behaviours of 9 h static soak. The key fluids temperatures’ cool-down trajectories were obtained and correlated well with vehicle test data. Increased end temperatures were seen for both coolant and oils of the VME model. This provides potential benefits towards CO2 emissions reduction and fuel savings. The air paths and thermal leakages with both encapsulations were visualised. Reduced leakage pathways were found in the VME design in comparison with the EME design. This demonstrated the capability of embedded CAE encapsulation heat retention modelling for evaluating encapsulation designs to reduce fuel consumption and emissions in a timely and robust manner, aiding the development of low-carbon transport technologies

    Integrated modelling for vehicles thermal energy management

    No full text
    Intelligent thermal and energy management can help deliver optimized engineering solutions for next-generation low-carbon vehicles, mitigating environmental pollution and minimising real-world energy consumption to deliver better fuel economy and electric range as well as drive comfort. Different application specific modelling environments are used in modern vehicle developments across the vehicle development cycle. In this paper, a holistic approach towards assessment of thermal and fluid interactions within an automobile was taken, to simulate the performance, heat flux, thermodynamic and energy efficiency of the vehicle system. The overall system consists of vehicle propulsion system, cabin climate system, cooling system, electrical system, chassis and control systems. The powertrain subsystem models were developed to evaluate friction losses, fuel consumption, emissions, as well as battery utilization over legislative drive cycles. The heating, ventilation and air-conditioning (HVAC) and cabin models were developed to assess additional fuel consumption and energy optimization from cabin thermal comfort. A co-simulation platform is developed and simulated in this paper for subsequent thermal control strategy development. This paper discusses the model development and software integration of different physical domains. The developed integrated virtual model provides a tool for system level design and analysis and evaluation of fuel consumption and emissions
    corecore